
Week 2 - Wednesday



 What did we talk about last time?
 Continued introduction to software engineering
 Git, GitHub, and version control systems







 A requirement is a property or behavior a product must 
exhibit

 A specification is a precise description
 A requirements specification is (unsurprisingly) a precise 

description of the properties or behaviors a product must 
have



 Stakeholders are anyone affected by a product or its 
development
 Customers are the people that pay for a product
 Users are people who interact with the product
 Clients are people for whom software was created (includes both 

customers and users)
 Developers are all the people who work on the project
 Regulators are responsible for ensuring that software meets 

standards
 Marketers stand in for clients when making mass-market products



 All the stakeholders have needs, but not all of these needs can 
or should be requirements

 Stakeholder needs are frequently in conflict
 It's a pain to put good privacy controls into a product
 But regulators might require it

 Stakeholder needs are incomplete and sometimes incorrect
 Stakeholders needs are often abstract
 "The game should be awesome."



 A stakeholder need is a feature that one or more 
stakeholders want

 Sometimes, these needs are written in descriptions called 
needs specifications

 Then, developers have to wrangle all of these conflicting, 
incomplete, and vague needs into a requirements 
specification

 Traditional methods may have a specific person who does this
 Titles like requirements analyst, requirements specialist, user 

interaction designer



 It's common to divide requirements into functional and non-
functional categories

 Functional requirements are about how software takes input 
and turns it into output, its behavior
 Appearance
 User interface actions
 Input and output processes

 Most requirements are functional requirements, and they take 
the most time and effort to specify



 Non-functional requirements describe the properties software must 
have
 Speed of processing
 Amount of memory used
 How often failures can be permitted
 Level of security
 Ease of modification
 Cost of development
 Platforms the product must run on

 Non-functional requirements are more abstract than functional 
requirements

 Functional requirements are tied to specific pieces of code, but non-
functional requirements are properties of the whole system



 This example from the book shows the same specification from abstract 
to concrete:
 The product must provide an online bookstore shopping experience.
 The product must provide titles and descriptions of books from which users may 

choose books to purchase.
 The product must allow shoppers to buy books by placing them in a shopping 

cart.
 The product must display a button with each book description that when 

pressed places books in the shopper’s cart.
 The product must display a button labeled "Buy" that maintains a constant 

position (despite scrolling) at the upper right-hand corner of a book-description 
web page. When pressed, this button must place the book whose description is 
displayed into the shopper’s cart.



 Business requirements specifications are client objectives that 
must be met
 They are abstract descriptions of the product
 They might include deadlines or sales targets
 They're usually non-functional requirements

 User-level needs and requirements are one step more concrete
 They describe tasks or goals that the product would allow a user to 

perform
 These tend to describe what the product does but not how
 Could be functional or non-functional



 Operational-level needs and requirements describe individual inputs 
and outputs
 These are more specific than user-level needs and requirements
 Example: The product must allow users to enter polynomial equations, 

trigonometric equations, logarithmic equations, and exponential equations, all 
of one variable.

 Physical-level needs and requirements are about the appearance and 
formatting of the user interface
 These will describe what the product actually looks like (which might be several 

different descriptions if the same product works on a desktop and a phone)
 Example: The product must provide a text box for equation input. The text box 

must display 50 characters and scroll vertically up to 800 lines.



 Most of the terminology we've been using comes out of 
traditional software development processes like waterfall

 In that paradigm, requirements must be gathered first, 
followed by design, followed by implementation, testing, and 
maintenance

 The requirements must be frozen so that the next steps can 
take place

 Then, no one wants to change the requirements because 
you'll have to redo everything that comes after, which is 
expensive



 It's really hard to figure out all the requirements before doing 
any coding and looking at prototypes

 The world changes quickly, especially in technology, and 
people's desires change

 Writing all the requirements takes a lot of work, creates large 
documents, and costs a lot of money

 The waterfall process means that nothing is ready for a long 
time (often years) after the project starts, and some projects 
get canceled



 Agile developers try not to write requirements at all
 But you have to start with something...

 Stakeholder needs are turned into lists called product 
backlogs

 A product owner adds to the product backlogs and prioritizes 
them

 High priority items are chosen for each sprint, the agile term 
for a development iteration



 Delay choosing requirements as long as possible
 Stakeholder needs can be easily added or removed from the product backlog
 Requirements are set only for the product backlog items (PBIs) when they're 

implemented on a sprint
 Delay refinement as long as possible
 PBIs are broken down until they're small enough and detailed enough for a single sprint
 User-level requirements are refined into operational- and physical-level requirements 

for the sprint where they're implemented
 Avoid writing requirements altogether
 Instead of writing down physical-level requirements, talk to the stakeholders and 

implement what they say in the sprint
 Determine requirements in light of current product features
 Because agile methods iterate on an existing product, everyone can see which features 

would be most useful next



 Specifications are usually made in declarative English (or 
appropriate natural language) sentences

 Problem: English is vague and confusing
 Rules for good technical writing:
 Write complete, simple sentences in the active voice
 Define terms clearly and use them consistently
 Avoid synonyms
 Group related material into sections
 Use tables, lists, indentation, white space, and other formatting aids

 Use "must" or "shall" to describe behaviors the product must do



 Requirements should be testable or verifiable
 This means that there can be a process for testing whether the 

product meets the requirement
 Bad requirement:
 The product must display query results quickly.

 Good requirement:
 The product must display query results in less than one second.

 The bad requirement isn't testable because "quickly" is subjective
 The good requirement is testable because we can time the 

finished system



 We want a clear relationship between a requirement, a part of the design, 
the code that implements this design, and the tests that verify it

 Being able to connect the requirements to later stages of development is 
called requirements traceability

 To make requirements more traceable, each specification should state 
only a single requirement
 This kind of specification is called atomic

 Non-atomic specification:
 The product must display a list of previous commands and the results of 

commands, each in its own window.
 The goal is simplicity and clarity
 A long list of simple requirements is better than a short list of confusing, 

complex requirements



 Agile developers have some documents like product vision statements 
and product backlog items

 A very common way to describe requirements is through user stories
 A user story describes a function that the product provides to users
 Sometimes a big story that is a huge chunk of the application is called an 

epic
 Sometimes a story that would take several sprints to implement is called 

a feature
 A story that can be implemented in a single sprint is a sprintable story or 

an implementable story
 Note: Some agile people only use the term user story for sprintable

stories



 A common way of expressing user stories is user voice form:
 As a <role>, I want to <activity> so that <benefit>.
 <role> is replaced by a user role, which is some category of user
 <activity> is a function that the system does
 <benefit> shows the value of the activity but is an optional part of 

user voice form
 Example:
 As a payroll clerk, I want to enter salary data so that payrolls will use 

adjusted salaries.



 Like traditional requirements specifications, user stories should be 
testable

 Thus, sprintable user stories should have acceptance criteria or 
conditions of satisfaction that say what product behavior will 
count as satisfying the user story

 Some methods use the three Cs of user stories:
 Card: An index card (or virtual equivalent) with a user story title and the 

user story itself on its front
 Conversation: Discussions about the user story, which might not be 

written in any way, because agile emphasizes face-to-face discussion
 Confirmation: Acceptance criteria for the user story, written on the back 

of the card



 It can be difficult to discover what stakeholders actually want from a 
product

 Some approaches:
 Interviews: Ask individual stakeholders what they want and record the answers
 Observation: Watch the users doing tasks, asking them to describe the actions 

they're taking
 Focus groups: Informal discussion with six to nine people and a facilitator
 Workshops: A meeting focused on documenting the desires of many 

stakeholders
 Prototypes: Let stakeholders respond to different versions of a product
 Document studies: Read documents associated with the business that needs 

the product
 Competitive product studies: Analyze similar existing products for strengths 

and weaknesses



 Agile processes don't focus on getting all the requirements up 
front

 Instead, a cornerstone of the agile approach is constantly getting 
feedback, allowing for quick responses

 The product itself becomes an evolving prototype that it easy to 
understand and unlikely to become obsolete

 Potential problems:
 Stakeholders can overreact to current problems and lose sight of the big 

picture
 Agile methods give a lot of power to the few stakeholders who give 

feedback, and others might be ignored





 Work day on Friday
 Next Monday:
 Verifying and validating requirements
 Requirements management
 Requirements and design
 Requirements modeling and UML



SCAN the QR CODE to REGISTER



 Keep reading Chapter 5: Software Product Requirements for 
Monday

 Keep working on your projects
 Project 1 (Draft) is due next Friday, September 13
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