
Week 2 - Wednesday



 What did we talk about last time?
 Continued introduction to software engineering
 Git, GitHub, and version control systems







 A requirement is a property or behavior a product must 
exhibit

 A specification is a precise description
 A requirements specification is (unsurprisingly) a precise 

description of the properties or behaviors a product must 
have



 Stakeholders are anyone affected by a product or its 
development
 Customers are the people that pay for a product
 Users are people who interact with the product
 Clients are people for whom software was created (includes both 

customers and users)
 Developers are all the people who work on the project
 Regulators are responsible for ensuring that software meets 

standards
 Marketers stand in for clients when making mass-market products



 All the stakeholders have needs, but not all of these needs can 
or should be requirements

 Stakeholder needs are frequently in conflict
 It's a pain to put good privacy controls into a product
 But regulators might require it

 Stakeholder needs are incomplete and sometimes incorrect
 Stakeholders needs are often abstract
 "The game should be awesome."



 A stakeholder need is a feature that one or more 
stakeholders want

 Sometimes, these needs are written in descriptions called 
needs specifications

 Then, developers have to wrangle all of these conflicting, 
incomplete, and vague needs into a requirements 
specification

 Traditional methods may have a specific person who does this
 Titles like requirements analyst, requirements specialist, user 

interaction designer



 It's common to divide requirements into functional and non-
functional categories

 Functional requirements are about how software takes input 
and turns it into output, its behavior
 Appearance
 User interface actions
 Input and output processes

 Most requirements are functional requirements, and they take 
the most time and effort to specify



 Non-functional requirements describe the properties software must 
have
 Speed of processing
 Amount of memory used
 How often failures can be permitted
 Level of security
 Ease of modification
 Cost of development
 Platforms the product must run on

 Non-functional requirements are more abstract than functional 
requirements

 Functional requirements are tied to specific pieces of code, but non-
functional requirements are properties of the whole system



 This example from the book shows the same specification from abstract 
to concrete:
 The product must provide an online bookstore shopping experience.
 The product must provide titles and descriptions of books from which users may 

choose books to purchase.
 The product must allow shoppers to buy books by placing them in a shopping 

cart.
 The product must display a button with each book description that when 

pressed places books in the shopper’s cart.
 The product must display a button labeled "Buy" that maintains a constant 

position (despite scrolling) at the upper right-hand corner of a book-description 
web page. When pressed, this button must place the book whose description is 
displayed into the shopper’s cart.



 Business requirements specifications are client objectives that 
must be met
 They are abstract descriptions of the product
 They might include deadlines or sales targets
 They're usually non-functional requirements

 User-level needs and requirements are one step more concrete
 They describe tasks or goals that the product would allow a user to 

perform
 These tend to describe what the product does but not how
 Could be functional or non-functional



 Operational-level needs and requirements describe individual inputs 
and outputs
 These are more specific than user-level needs and requirements
 Example: The product must allow users to enter polynomial equations, 

trigonometric equations, logarithmic equations, and exponential equations, all 
of one variable.

 Physical-level needs and requirements are about the appearance and 
formatting of the user interface
 These will describe what the product actually looks like (which might be several 

different descriptions if the same product works on a desktop and a phone)
 Example: The product must provide a text box for equation input. The text box 

must display 50 characters and scroll vertically up to 800 lines.



 Most of the terminology we've been using comes out of 
traditional software development processes like waterfall

 In that paradigm, requirements must be gathered first, 
followed by design, followed by implementation, testing, and 
maintenance

 The requirements must be frozen so that the next steps can 
take place

 Then, no one wants to change the requirements because 
you'll have to redo everything that comes after, which is 
expensive



 It's really hard to figure out all the requirements before doing 
any coding and looking at prototypes

 The world changes quickly, especially in technology, and 
people's desires change

 Writing all the requirements takes a lot of work, creates large 
documents, and costs a lot of money

 The waterfall process means that nothing is ready for a long 
time (often years) after the project starts, and some projects 
get canceled



 Agile developers try not to write requirements at all
 But you have to start with something...

 Stakeholder needs are turned into lists called product 
backlogs

 A product owner adds to the product backlogs and prioritizes 
them

 High priority items are chosen for each sprint, the agile term 
for a development iteration



 Delay choosing requirements as long as possible
 Stakeholder needs can be easily added or removed from the product backlog
 Requirements are set only for the product backlog items (PBIs) when they're 

implemented on a sprint
 Delay refinement as long as possible
 PBIs are broken down until they're small enough and detailed enough for a single sprint
 User-level requirements are refined into operational- and physical-level requirements 

for the sprint where they're implemented
 Avoid writing requirements altogether
 Instead of writing down physical-level requirements, talk to the stakeholders and 

implement what they say in the sprint
 Determine requirements in light of current product features
 Because agile methods iterate on an existing product, everyone can see which features 

would be most useful next



 Specifications are usually made in declarative English (or 
appropriate natural language) sentences

 Problem: English is vague and confusing
 Rules for good technical writing:
 Write complete, simple sentences in the active voice
 Define terms clearly and use them consistently
 Avoid synonyms
 Group related material into sections
 Use tables, lists, indentation, white space, and other formatting aids

 Use "must" or "shall" to describe behaviors the product must do



 Requirements should be testable or verifiable
 This means that there can be a process for testing whether the 

product meets the requirement
 Bad requirement:
 The product must display query results quickly.

 Good requirement:
 The product must display query results in less than one second.

 The bad requirement isn't testable because "quickly" is subjective
 The good requirement is testable because we can time the 

finished system



 We want a clear relationship between a requirement, a part of the design, 
the code that implements this design, and the tests that verify it

 Being able to connect the requirements to later stages of development is 
called requirements traceability

 To make requirements more traceable, each specification should state 
only a single requirement
 This kind of specification is called atomic

 Non-atomic specification:
 The product must display a list of previous commands and the results of 

commands, each in its own window.
 The goal is simplicity and clarity
 A long list of simple requirements is better than a short list of confusing, 

complex requirements



 Agile developers have some documents like product vision statements 
and product backlog items

 A very common way to describe requirements is through user stories
 A user story describes a function that the product provides to users
 Sometimes a big story that is a huge chunk of the application is called an 

epic
 Sometimes a story that would take several sprints to implement is called 

a feature
 A story that can be implemented in a single sprint is a sprintable story or 

an implementable story
 Note: Some agile people only use the term user story for sprintable

stories



 A common way of expressing user stories is user voice form:
 As a <role>, I want to <activity> so that <benefit>.
 <role> is replaced by a user role, which is some category of user
 <activity> is a function that the system does
 <benefit> shows the value of the activity but is an optional part of 

user voice form
 Example:
 As a payroll clerk, I want to enter salary data so that payrolls will use 

adjusted salaries.



 Like traditional requirements specifications, user stories should be 
testable

 Thus, sprintable user stories should have acceptance criteria or 
conditions of satisfaction that say what product behavior will 
count as satisfying the user story

 Some methods use the three Cs of user stories:
 Card: An index card (or virtual equivalent) with a user story title and the 

user story itself on its front
 Conversation: Discussions about the user story, which might not be 

written in any way, because agile emphasizes face-to-face discussion
 Confirmation: Acceptance criteria for the user story, written on the back 

of the card



 It can be difficult to discover what stakeholders actually want from a 
product

 Some approaches:
 Interviews: Ask individual stakeholders what they want and record the answers
 Observation: Watch the users doing tasks, asking them to describe the actions 

they're taking
 Focus groups: Informal discussion with six to nine people and a facilitator
 Workshops: A meeting focused on documenting the desires of many 

stakeholders
 Prototypes: Let stakeholders respond to different versions of a product
 Document studies: Read documents associated with the business that needs 

the product
 Competitive product studies: Analyze similar existing products for strengths 

and weaknesses



 Agile processes don't focus on getting all the requirements up 
front

 Instead, a cornerstone of the agile approach is constantly getting 
feedback, allowing for quick responses

 The product itself becomes an evolving prototype that it easy to 
understand and unlikely to become obsolete

 Potential problems:
 Stakeholders can overreact to current problems and lose sight of the big 

picture
 Agile methods give a lot of power to the few stakeholders who give 

feedback, and others might be ignored





 Work day on Friday
 Next Monday:
 Verifying and validating requirements
 Requirements management
 Requirements and design
 Requirements modeling and UML



SCAN the QR CODE to REGISTER



 Keep reading Chapter 5: Software Product Requirements for 
Monday

 Keep working on your projects
 Project 1 (Draft) is due next Friday, September 13


	COMP 3100
	Last time
	Questions?
	Requirements
	Terminology
	Stakeholders
	Stakeholder needs
	More on stakeholder needs
	Functional and non-functional requirements
	Non-functional requirements
	Abstraction in specification
	Levels of abstraction
	More levels of abstraction
	Requirements in traditional processes
	Problems with requirements in traditional processes
	Requirements in agile processes
	How Scrum tries to make changing requirements cheap and easy
	Stating specifications in traditional processes
	Testable requirements
	Requirements traceability
	Stating specifications in agile processes
	User voice form
	Good user stories
	Eliciting stakeholder needs in traditional processes
	Eliciting stakeholder needs in agile processes
	Upcoming
	Next time…
	Slide Number 28
	Reminders

