
Week 2 - Wednesday



 What did we talk about last time?
 Continued introduction to software engineering
 Git, GitHub, and version control systems







 A requirement is a property or behavior a product must 
exhibit

 A specification is a precise description
 A requirements specification is (unsurprisingly) a precise 

description of the properties or behaviors a product must 
have



 Stakeholders are anyone affected by a product or its 
development
 Customers are the people that pay for a product
 Users are people who interact with the product
 Clients are people for whom software was created (includes both 

customers and users)
 Developers are all the people who work on the project
 Regulators are responsible for ensuring that software meets 

standards
 Marketers stand in for clients when making mass-market products



 All the stakeholders have needs, but not all of these needs can 
or should be requirements

 Stakeholder needs are frequently in conflict
 It's a pain to put good privacy controls into a product
 But regulators might require it

 Stakeholder needs are incomplete and sometimes incorrect
 Stakeholders needs are often abstract
 "The game should be awesome."



 A stakeholder need is a feature that one or more 
stakeholders want

 Sometimes, these needs are written in descriptions called 
needs specifications

 Then, developers have to wrangle all of these conflicting, 
incomplete, and vague needs into a requirements 
specification

 Traditional methods may have a specific person who does this
 Titles like requirements analyst, requirements specialist, user 

interaction designer



 It's common to divide requirements into functional and non-
functional categories

 Functional requirements are about how software takes input 
and turns it into output, its behavior
 Appearance
 User interface actions
 Input and output processes

 Most requirements are functional requirements, and they take 
the most time and effort to specify



 Non-functional requirements describe the properties software must 
have
 Speed of processing
 Amount of memory used
 How often failures can be permitted
 Level of security
 Ease of modification
 Cost of development
 Platforms the product must run on

 Non-functional requirements are more abstract than functional 
requirements

 Functional requirements are tied to specific pieces of code, but non-
functional requirements are properties of the whole system



 This example from the book shows the same specification from abstract 
to concrete:
 The product must provide an online bookstore shopping experience.
 The product must provide titles and descriptions of books from which users may 

choose books to purchase.
 The product must allow shoppers to buy books by placing them in a shopping 

cart.
 The product must display a button with each book description that when 

pressed places books in the shopper’s cart.
 The product must display a button labeled "Buy" that maintains a constant 

position (despite scrolling) at the upper right-hand corner of a book-description 
web page. When pressed, this button must place the book whose description is 
displayed into the shopper’s cart.



 Business requirements specifications are client objectives that 
must be met
 They are abstract descriptions of the product
 They might include deadlines or sales targets
 They're usually non-functional requirements

 User-level needs and requirements are one step more concrete
 They describe tasks or goals that the product would allow a user to 

perform
 These tend to describe what the product does but not how
 Could be functional or non-functional



 Operational-level needs and requirements describe individual inputs 
and outputs
 These are more specific than user-level needs and requirements
 Example: The product must allow users to enter polynomial equations, 

trigonometric equations, logarithmic equations, and exponential equations, all 
of one variable.

 Physical-level needs and requirements are about the appearance and 
formatting of the user interface
 These will describe what the product actually looks like (which might be several 

different descriptions if the same product works on a desktop and a phone)
 Example: The product must provide a text box for equation input. The text box 

must display 50 characters and scroll vertically up to 800 lines.



 Most of the terminology we've been using comes out of 
traditional software development processes like waterfall

 In that paradigm, requirements must be gathered first, 
followed by design, followed by implementation, testing, and 
maintenance

 The requirements must be frozen so that the next steps can 
take place

 Then, no one wants to change the requirements because 
you'll have to redo everything that comes after, which is 
expensive



 It's really hard to figure out all the requirements before doing 
any coding and looking at prototypes

 The world changes quickly, especially in technology, and 
people's desires change

 Writing all the requirements takes a lot of work, creates large 
documents, and costs a lot of money

 The waterfall process means that nothing is ready for a long 
time (often years) after the project starts, and some projects 
get canceled



 Agile developers try not to write requirements at all
 But you have to start with something...

 Stakeholder needs are turned into lists called product 
backlogs

 A product owner adds to the product backlogs and prioritizes 
them

 High priority items are chosen for each sprint, the agile term 
for a development iteration



 Delay choosing requirements as long as possible
 Stakeholder needs can be easily added or removed from the product backlog
 Requirements are set only for the product backlog items (PBIs) when they're 

implemented on a sprint
 Delay refinement as long as possible
 PBIs are broken down until they're small enough and detailed enough for a single sprint
 User-level requirements are refined into operational- and physical-level requirements 

for the sprint where they're implemented
 Avoid writing requirements altogether
 Instead of writing down physical-level requirements, talk to the stakeholders and 

implement what they say in the sprint
 Determine requirements in light of current product features
 Because agile methods iterate on an existing product, everyone can see which features 

would be most useful next



 Specifications are usually made in declarative English (or 
appropriate natural language) sentences

 Problem: English is vague and confusing
 Rules for good technical writing:
 Write complete, simple sentences in the active voice
 Define terms clearly and use them consistently
 Avoid synonyms
 Group related material into sections
 Use tables, lists, indentation, white space, and other formatting aids

 Use "must" or "shall" to describe behaviors the product must do



 Requirements should be testable or verifiable
 This means that there can be a process for testing whether the 

product meets the requirement
 Bad requirement:
 The product must display query results quickly.

 Good requirement:
 The product must display query results in less than one second.

 The bad requirement isn't testable because "quickly" is subjective
 The good requirement is testable because we can time the 

finished system



 We want a clear relationship between a requirement, a part of the design, 
the code that implements this design, and the tests that verify it

 Being able to connect the requirements to later stages of development is 
called requirements traceability

 To make requirements more traceable, each specification should state 
only a single requirement
 This kind of specification is called atomic

 Non-atomic specification:
 The product must display a list of previous commands and the results of 

commands, each in its own window.
 The goal is simplicity and clarity
 A long list of simple requirements is better than a short list of confusing, 

complex requirements



 Agile developers have some documents like product vision statements 
and product backlog items

 A very common way to describe requirements is through user stories
 A user story describes a function that the product provides to users
 Sometimes a big story that is a huge chunk of the application is called an 

epic
 Sometimes a story that would take several sprints to implement is called 

a feature
 A story that can be implemented in a single sprint is a sprintable story or 

an implementable story
 Note: Some agile people only use the term user story for sprintable

stories



 A common way of expressing user stories is user voice form:
 As a <role>, I want to <activity> so that <benefit>.
 <role> is replaced by a user role, which is some category of user
 <activity> is a function that the system does
 <benefit> shows the value of the activity but is an optional part of 

user voice form
 Example:
 As a payroll clerk, I want to enter salary data so that payrolls will use 

adjusted salaries.



 Like traditional requirements specifications, user stories should be 
testable

 Thus, sprintable user stories should have acceptance criteria or 
conditions of satisfaction that say what product behavior will 
count as satisfying the user story

 Some methods use the three Cs of user stories:
 Card: An index card (or virtual equivalent) with a user story title and the 

user story itself on its front
 Conversation: Discussions about the user story, which might not be 

written in any way, because agile emphasizes face-to-face discussion
 Confirmation: Acceptance criteria for the user story, written on the back 

of the card



 It can be difficult to discover what stakeholders actually want from a 
product

 Some approaches:
 Interviews: Ask individual stakeholders what they want and record the answers
 Observation: Watch the users doing tasks, asking them to describe the actions 

they're taking
 Focus groups: Informal discussion with six to nine people and a facilitator
 Workshops: A meeting focused on documenting the desires of many 

stakeholders
 Prototypes: Let stakeholders respond to different versions of a product
 Document studies: Read documents associated with the business that needs 

the product
 Competitive product studies: Analyze similar existing products for strengths 

and weaknesses



 Agile processes don't focus on getting all the requirements up 
front

 Instead, a cornerstone of the agile approach is constantly getting 
feedback, allowing for quick responses

 The product itself becomes an evolving prototype that it easy to 
understand and unlikely to become obsolete

 Potential problems:
 Stakeholders can overreact to current problems and lose sight of the big 

picture
 Agile methods give a lot of power to the few stakeholders who give 

feedback, and others might be ignored





 Work day on Friday
 Next Monday:
 Verifying and validating requirements
 Requirements management
 Requirements and design
 Requirements modeling and UML



SCAN the QR CODE to REGISTER



 Keep reading Chapter 5: Software Product Requirements for 
Monday

 Keep working on your projects
 Project 1 (Draft) is due next Friday, September 13


	COMP 3100
	Last time
	Questions?
	Requirements
	Terminology
	Stakeholders
	Stakeholder needs
	More on stakeholder needs
	Functional and non-functional requirements
	Non-functional requirements
	Abstraction in specification
	Levels of abstraction
	More levels of abstraction
	Requirements in traditional processes
	Problems with requirements in traditional processes
	Requirements in agile processes
	How Scrum tries to make changing requirements cheap and easy
	Stating specifications in traditional processes
	Testable requirements
	Requirements traceability
	Stating specifications in agile processes
	User voice form
	Good user stories
	Eliciting stakeholder needs in traditional processes
	Eliciting stakeholder needs in agile processes
	Upcoming
	Next time…
	Slide Number 28
	Reminders

